
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Modern problems require modern
solutions: How modern CMake
supports modern C++ in Kokkos

Je remiah Wi lke , Sand ia Nat iona l Labs, L iver more , CA

Contributors: Daniel Arndt, Damien Lebrun-Grandie, Jonathan
Madsen, Nathan Ellingwood, Christian Trott
P3HPC, Virtual Kansas City, 2020 SAND2020-8713 C

Performance portability in the build system same goal as C++:
single platform-agnostic “source” gives high-performance build

View<Scalar*> output("Output", N);
parallel_for(N, KOKKOS_LAMBDA(const int& i){
// work on output

})

Platform-independent C++ through template metaprogramming

find_package(Kokkos REQUIRED)
target_link_libraries(myTarget Kokkos::kokkos)

Platform-independent builds through CMake

1. Generate functionally
correct code, dispatch to
appropriate device

2. Choose execution
order/layout

3. Partition and map work
to threads

1. Generate functionally
correct code, dispatch to
appropriate device

2. Add architecture
optimization flags

3. Tune compiler
optimizations

Modern CMake/C++ wants a clean separation of ‘building’ and
‘using’ libraries: transitive targets and properties

•Building: What flags (includes, definitions, compile, link) does my project need to build?

•Using: What flags do downstream projects need when building with my project?

• Automake requires collecting and forwarding, e.g.
My_CXX_FLAGS += $(Kokkos_CXX_FLAGS)

• You can always do anything in Make if you try hard
enough…

• TARGET_LINK_LIBRARIES(Ifpack2) makes C++ App
depend transitively on Kokkos flags (PUBLIC)

• TARGET_LINK_LIBRARIES(Ifpack2_C) does not make
C App depend transitively on Kokkos flags (PRIVATE)

• Transitive static and dynamic libraries handled

Modern CMake/C++ wants a clean separation of ‘building’ and
‘using’ libraries: transitive targets and properties
•Building: What flags (includes, definitions, compile, link) does my project need to build?

•Using: What flags do downstream projects need when building with my project?

•CMake 3, first “modern” version released June 2014
• Clean separation of building and using
• Targets and properties preferred over exporting variables

•Targets (executables or libraries) are very flexible
• Link + header, header-only, link-only
• Compile-flags only in case of OpenMP or pthreads, e.g.
• Imported from external install or built within your project

•Flags (i.e. target properties) are declared as PUBLIC (build + use), PRIVATE (build),
INTERFACE (use)
• Property INCLUDE_DIRECTORIES specifies include flags for library being built
• Property INTERFACE_INCLUDE_DIRECTORIES specifies flags for downstream projects

A “library” can be way more
interesting that just a .h and .a/.so

Kokkos needs to propagate build flags to ALL downstream
projects: Xeon/Volta70, GCC, OpenMP/CUDA example

-march=skylake-avx512
-mtune=skylake-avx512
-mrtm

-expt-extended-lambda

-arch=sm_70

-Xcompiler -fopenmp

-std=c++11

Skylake optimization flags

Lambda support for Kokkos

Build for Volta70

Build OpenMP support on host

Resolve conflicting standard requests
from different libs

Single case not terrible, but unrealistic to
expect app developers to handle all use cases

Corporate America wants its developers to never waste time
worrying about build systems and build times
•Facebook: Buck (open-sourced)
• Focus is incremental builds, write in Starlark

•Google: Blaze (open-sourced as Bazel)
• Focused on monorepos, not great with transitive dependencies, write in Starlark

•Twitter has Pants, Amazon has Brazil
• Can’t say much about these

•Open source Maven:
• Java focused, write XML files, does handle transitive dependencies

•SCons, Waf:
• Python-based, not great with transitive dependencies

•Meson:
• Basically CMake in Python, good with transitive dependencies

Scalable development with CMake targets: Have your
monorepo and eat it, too

Smaller components
• Ease of reuse across community
• Better scaling of version control
• Improve collaboration with

smaller dependencies

Monorepo
• Ease of reuse within a project
• Atomic commits
• Improve collaboration through

flexible code ownership

Kokkos Goal: Be a central repository of tuning knowledge and
share with the world! Need software engineering problem to
maximize focus on performance issues and sharing components.

Scalable development with CMake targets: Have your
monorepo and eat it, too

target_link_libraries(myTarget Kokkos::kokkos)

Could be Autools/Make
installed project

converted to import
CMake target

Downstream apps can be
happily oblivious to where
the target comes from

Could be installed from
a CMake build

Could be fetched/built
as part of your project

(Git submodule)

Spack dependency nightmare
of Trilinos fixed soon?

Separation between configure, generate, and build allows
interaction between downstream and upstream

•Configure (Dynamic): Read options (e.g. ENABLE_CUDA=ON) and choose flags.

•Generate (Dynamic): Create Makefiles (or Ninja files, etc) based on configuration type
(Debug/Release) and other variable values.

•Build (Static): Execute third-party tool to build dependency graph

Separation between configure, generate, and build allows
interaction between downstream and upstream

•Generator expressions allow Kokkos to define build flags TO BE CONFIGURED LATER
• $<STREQUAL:$<TARGET_PROPERTY:PRECISION>, LOW>,--use_fast_math>
• Target property set by downstream library, flag set by Kokkos

•Iterative compilation, i.e. autotuning compiler pass order/selection, often finds better
compiler optimization sequences for different classes of kernels
• $<STREQUAL:$<TARGET_PROPERTY:IC_CLASS>, FFT>, ${FFT_AUTOTUNED_FLAGS}>

Spack handles some complexity, could handle more

12

class KokkosKernels(CMakePackage, CudaPackage):
...
depends_on("kokkos")

class KokkosKernels(CMakePackage, CudaPackage):
...
depends_on("kokkos”, PUBLIC)

•Spack compiler wrapper can add architecture or device flags to your project

•Spack could itself become a meta-build system that generates Makefiles/Ninja Files

Modern CMake will enable best usage of modern C++ going
forward to ‘20 and ‘23

•CMake could be de facto “standard” build system for modern C++ in future if you believe
Reddit and CppCon

•Precompiled headers introduced into most recent CMake release
• (Probably) no changes to your build system if Kokkos starts using precompiled headers.
• Single call to TARGET_LINK_LIBRARIES(Kokkos::kokkos) handles all the complexity of

the Kokkos interface

•C++ modules will (or won’t) be coming soon
• (Probably) no changes to your project build system if Kokkos starts using modules (code

changes, though)
• Single call to TARGET_LINK_LIBRARIES(Kokkos::kokkos) would handle all the

complexity of the Kokkos interface and module dependencies

Harvard Business Review: Behavioral Economists #1 Reasons
People Make Bad Decisions
•Not anticipating unexpected events
• TARGET_LINK_LIBRARIES is smallest possible interface that allows Kokkos to be most agile

without breaking behaviors users depend on (Hyrum’s Law)

•Indecisiveness
• CMake has well-defined best practices (Professional CMake, Craig Scott)

•Remaining locked in the past
• Good luck with modules/precompiled headers using Automake

•Having no strategic alignment
• Does full stack modern C++ require program commitment to modern CMake?

•Isolation:
• Hard to bring tools from Kokkos ecosystem together if different build worlds

•Lack of technical depth
• CMake has a learning curve that is steeper than raw Makefiles
• Make easy problems a bit more difficult but it makes hard problems tractable

Conclusions

•Kokkos is “generating” code for platforms from single C++ source, also needs to control
your build system with single CMake source

•Build system design needs to define “building” and “using” requirements
• Implement in CMake through targets and properties

•Targets and properties allow libraries to be modular components and a monorepo

•Targets and properties not only simplifies transitive dependencies, it allows configurable
transitive dependences through generator expressions

Acknowledgments
Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA-0003525.

